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LETTER TO THE EDITOR 

Tetrahedral classification in Euclidean space 

K Y Szeto 
Department of Physics, York University, Toronto Ontario, Canada, M3J 1P7 

Received 5 June 1989 

Abstract. A new classification of local structures in three-dimensional Euclidean space is 
formulated using a set of topological codes describing tettahedra formed by n species of 
atoms or vacancies. Some exact results in binary systems, the Frank-Kasper phases, the 
truncated icosahedron, and the truncated octahedron are presented. 

Since all three-dimensional Euclidean space-filling structures can be described as the 
packing of polyhedra [l], and all polyhedra can be described as specific packing of 
tetrahedra, the problem of local structure in three-dimensional Euclidean space can 
be reduced to that of filling space with tetrahedra [2]. We present a new structure 
classification scheme based on the decoration of atoms chosen from n species at the 
vertices of tetrahedra. For n species of atoms, there are B(n) (= n + (;)) number of 
bonds withsingle-valued bond length de,, A ( n )  (= n + 2 ( 9  + (i)) number of triangular 
faces and T(n) (= n + ( 4 )  + 2( 4 )  + n( 'c ' ) + (z))  number of tetrahedra. For real systems 
with multi-valued bond lengths, we introduce a coding species y to specify different 
bond lengths between LY and p such that d,, = d,, + d,, and the distance of y to all other 
species is negative to indicate that y is not bonded to any other species except LY and p. 
In this way, the metrical relation between species remains single-valued. Defects can 
also be incorporated by treating, for example, the 6 species as vacancies rather than 
atoms. A necessary condition to fill space is that the sum of the dihedral angles around 
every bond is 21d 

The set of integers {Pi,:kl} is called the topological code for the ij bond. They specify the 
number of (ijkl) tetrahedra with dihedral angles @v:k/ (which are inverse trigonometric 
functions of bond lengths) that are wrapped around the ij bond. The sum is over all 
possible combinations of tetrahedra containing at least one ij bond. Note that the 
topological code can specify more than one topology, as the order of arrangements of 
atoms around the given bond is not specified (figure 5a of [2] illustrates this point). Once 
we know the toplogical code {P}, the bond lengths can be solved. This property of the 
topological codes compares favourably with the Voronoi classification, which has no 
simple way to extract bond lengths and which can always be dissected into tetrahedra 
and mapped into a set of topological codes. Another classification scheme for systems 
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Table 1. Topological code for the coordination polyhedral in Frank-Kasper phase. 

CN12 CN14 CN15 CN16 

n 2 2 

Speciesa A, B A, B 

Yb 1 2 

Code PAB A A  = (l) AA = 

(2) PAB AA = 3 
PAB AB = 

Bond dAA = K dAA = [2(1 - 1/3”*)]”* 
length d A B  = 1 dAB = 1 

dBB = 2[2/3l” -1’” 

A, B 

2 

dAA = (8/11)’’2 
dAB = 1 
dgg = (12/11)’” 

a B is assumed to be the central atom in all four cases. 
/3 is the number of sets of codes needed. 
dBB in CN12 and CN15 are not specified. 

described by nets [3] involves the idea that the sum of the spherical excess subtended by 
neighbours (as defined in the Frank-Kasper phase) of a given atom is 4n 

Here Q, ,k/ specifies the number of (ijkl) tetrahedra with spherical excess Q, ,kl around i. 
The coordination number Z, of species i is the sum of the over all (jkl) .  Novel 
structures can again be obtained by the solutions of this equation with this set of code 

To keep the problem manageable, we introduce a subclassification of structure by 
restricting the topological sum M , ,  (the sum of the integers P,,,kl over all kl) ,  for 
each bond ( i j )  to be between some range. For example, the Frank-Kasper phase [ l ]  
corresponds to 5 S M ,  S 6. An icosahedron of 20 A atoms at the vertices and one B 
atom at the centre corresponds to the to ological code PAB A A  = 5. The bond lengths 

the topological codes for the coordination polyhedra in table 1. The degeneracy y is the 
number of sets of codes for the given bond lengths. An algorithm has been developed 
to solve these non-linear equations for n up to 7 and to obtain all the compatible 
topological codes for a given set of bond lengths. 

The following resy‘lts of the local structures are obtained [4]. (i) Only three solutions 
for binary alloys for bond lengths satisfying dAA s dAB s dBg exist in nature. They are 
the NaC1, the packidg of regular prism, and the MgZnz Friauf-Laves structures [ 2 ,  
51. (ii) The minimum number of species of atoms required to arrive at a truncated 
icosahedron structure is three and the uniquely defined bond lengths are shown in table 
2. For n 3 4, a continuum of bond lengths can be found, since one can put two different 
species at the vertices of the triacontahedron before arriving at the truncated icosahedron 
[4]. (iii) There exist two constructions of the truncated octahedron from the truncated 
icosahedron, both of which involve well defined distortions. The first class of distortion 

{e>. 

Satisfy dAA = KdAB, with K = [2(1 - 1/5l B ’)]”’ = 1.051462224 . . . . We have tabulated 
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Table 2. An exact solution for the truncated icosahedron. 

Bond AA AB AC BB BC cc 
Length” KdAc 1 {[5 + 3(5)1’2]/[1 + 7(5)”2]}”2 Kdec {8(5)”’/[1 + 7(5)”2]}”2 [I - ( K 2 / 4 )  ~BB]”’ 

Degeneracy 2 2 7 
Y 

3 12 1 

~~~ ~ ~ ~ 

a dBc in CN12 and CN15 are not specified. 

involves bonds of slightly different lengths on the truncated icosahedron. The second 
involves distorted penta-pyramids and distorted hexa-pyramids in the linkage of the 
regular truncated icosahedron and the regular truncated octahedron. (iv) The degener- 
acy involved in Penrose rhombohedra with a specific decoration [4] consistent with that 
of Elser and Henley [6] is in the order of hundreds, implying that a large class of the 
Penrose structure can be obtained by this method of coding. (v) Matching rules can be 
enforced by suitable assignment of species. [4] These results are important to the study 
of quasi-crystal growths. 

To complete the solution of a structural problem, one must show that the solutions 
can actually fill space and are not just forming finite clusters [7]. One way to prove that 
a given solution can fill space is to look for a unit cell, starting from atomic arrangements 
specified by the codes. Another way is to embed the local structure in higher-dimensional 
space as a simpler unit cell of a periodic structure, and re-project back to three-dimen- 
sions to obtain a structure which can be quasiperiodic [8]. A third way is to use the 
induction method of growth. Let us begin with a local structure (the seed) specified by 
a set of codes and demand that the seed be grown surface after surface. If all local defects 
can be eliminated by a suitable sequence of addition of atoms to the ( N  + 1)th surface, 
given that the Nth surface is defect free, then by induction one can obtain a space-filling 
structure. (This is how equation (3) of reference [ 111 can be proved.) For crystal growth, 
this new classification scheme will facilitate the implementation of an algorithm using 
cellular automata. We can say that a crystal is a structure grown deterministically, in the 
sense that the local density p of atoms is a single-valued function of the neighbours. If a 
continuous spectrum of p exists, then an amorphous structure is expected. If p has a 
multitude of discrete choices, quasi-crystal [9], twinning [lo], or specific kinds of random 
structure can result [2, 111. 

Many physical constraints can be imposed on these topological codes. One constraint 
is symmetry. To specify S-fold symmetry, we can say that there are S number of CY atoms 
around an ij bond. In real systems, S usually is less than 10. So an exhaustive program 
to classify structures with M ,  s 10 may be made. Note that if some species are vacancies 
or coding species for bonds of difference lengths, M can be greater. For a system 
described by nets, the bond angles are fixed by quantum chemistry. This then cor- 
responds to a sub-classification of structures using tetrahedra with fixed face angles. 
Another interesting constraint is to impose the hard-sphere condition: d, = 
&(dam + dpp). This constraint reduces the number of bondlengthvariables, allows sphere- 
packing experiments [12], and has applications in communications [13]. 

The following iterative procedure can generate new structures using topological 
codes. By dissecting a known structure, one can obtain the topological codes. Using 
these codes, one can work out the bond lengths. Using these bond lengths, one can find 
out all compatible topological codes. For example, in the icosahedral structure of 
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Table 3. Bond lengths and topological codes for a truncated octahedron. 

Bond Bond length Degeneracy y Topological code 

AB 1 1 (1) PAB CD = 6 

AC (5/3)'12 1 (1) P A C  BC = 4, 
CD = 2 

AD 2/3'12 1 (l) PAD CC = 

BC (2/3)'/* 1 (l) PBC AC = 

cc (2/3)'/* 3 ( l )  pCC A B  = 4, 
pCC AD 

(2) pcc cc = 2, 
pCC CD = 4 

(3) pCC AB 2, 
pCC AD = 2, 
pCC CD = 2 

CD 1/3112 3 (l) pCD AC = 4 
(2) pCD CC = 
(3) pCD AC = 2, 

pCD CC = 2 

Bergman and co-workers [ 141, we find an infinite number of solutions for the arrival 
from an icosahedron to a truncated octahedron, which fills space by itself periodically. 
If we dissect the truncated octahedron, we get its topological codes in table 3. The 
truncated octahedron can be described as the packing of two tetrahedra: ABCC and 
ADCC, where A is the atom in the centre of the truncated octahedron, C the atom at 
the vertices, B the atom in the centre of the hexagonal face, and D the atom in the centre 
of the square face. The truncated octahedron is described by the first set of codes, the 
second and third sets are new consistent structures with the second set identified as the 
NaCl structure. 

Together with a set of bond lengths for relevant local structures of quasi-crystals, a 
set of energies E,  between species [1.5] can be introduced to simulate growths. Cor- 
relations [9,16] can be incorporated by the assignment of a many-body energy parameter 
Eqk, ,  , , thereby allowing a generalisation of Finney's experiment [ 121. The Bernal 
polyhedra [17] can also be coded for the study of Bernal ideal liquid. For quasi-crystals, 
the questions of finding where the atoms are is partially answered (we need also to know 
the dynamics). Using a growth algorithm, the 'glued' atoms in the icosahedral glass [18] 
can be specified, thereby providing further insights into the relation between the glass 
description and the quasi-crystal description of Steinhardt and co-workers [ 191. 

The support of NSERC of Canada through grant URF003.5153 is acknowledged. Discus- 
sions with Professor Chris Hensley, Veit Elser, K H Kuo and Y Wu were very helpful. 
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